Archive for the ‘Wales Wide Web’ Category

Ed-tech for good?

January 24th, 2020 by Graham Attwell

The Open Universiteit and the Centre for Education and Learning (CEL) at Leiden-Delft-Erasmus are publishing a new video series. “The digital revolution is having a significant impact on the way we learn and the ways in which educational institutions operate and engage with their students”, they say. Learning in a Digital Society vodcast series gives a platform to leading experts in Technology-Enhanced-Learning (TEL) to discuss this digital transformation. In each episode an expert delves into a single topic and discusses the challenges and opportunities presented by technology and their vision for the near future. Some address questions such as how to teach programming to children, or why technological innovation in education is often slow. Other videos provide a sketch of key research topics in TEL such as Learning Analytics and Open Education.

The first in the series is by Geoff Stead,  Chief Technical Officer at the language learning app Babbel. In a time when Ed-tech adherents are increasingly questioning the effectiveness and efficacy of their work – see for instance Andrey Waters much discussed ‘The 100 Worst Ed-Tech Debacles of the Decade’ – Geoff remains enthusiastic about the future of tech. Embrace the edges, he says, and don’t just be a passive consumer of tech.

Anyway, regardless of the content, I like the format and production.

Work based learning

January 24th, 2020 by Graham Attwell

“Will US universities be made redundant by the employability agenda?’, asks the Times Higher Education. It is a bit of a curious article. THE says that student debt and doubts by companies that college graduates are “job-ready” is leading to “increasing numbers of companies are taking the training of their workers in-house.”

Companies provide classroom and on-the-job training, ‘students’ get paid. But this just seems to be an apprenticeship to me, albeit an unregulated version. And in most European countries higher level (i.e. degree equivalent) apprenticeships are fast growing – Spain and the UK being two examples. In Germany there is also a growing tendency for young people to undertake an apprenticeship before or after going to university.

It should be noted that in none of the European countries has apprenticeship  led to universities becoming redundant.  however there are problems with the so called “employability agenda”. Is the definition of ’employability’ a broad curriculum designed to equip people for employment in the future or is it a narrow training programme to slot workers into the role requirerd by the company who has hired them. In European countries, wider social partners are involved in the planning and regulations of apprenticeship programmes, in order to ensure that a broader curriculum is followed. Indeed, repeated studies have pointed to the short termism of companies when designing their own training programmes.

Does AI mean we no longer need subject knowledge?

January 15th, 2020 by Graham Attwell

I am a little bemused by the approach of many of those writing about Artificial Intelligence in education to knowledge. The recently released Open University Innovation Report, Innovating Pedagogy, is typical in that respect.

“Helping students learn how to live effectively in a world increasingly impacted by AI also requires a pedagogy”, they say, “that, rather than focusing on what computers are good at (e.g. knowledge acquisition), puts more emphasis on the skills that make humans uniquely human (e.g. critical thinking, communication, collaboration and creativity) – skills in which computers remain weak.”

I have nothing against critical thinking, collaboration or creativity, although I think these are hard subjects to teach. But I find it curious that knowledge is being downplayed on the grounds that computers are good at it. Books have become very good at knowledge over the years but it doesn’t mean that humans have abandoned it to the books. What is striking though is the failure to distinguish between abstracted and applied knowledge. Computers are very good at producing (and using) information and data. But they are not nearly as good at applying that knowledge in real world interactions. Computers (in the form of robots) will struggle to open a door. Computers may know all about the latest hair styles but I very much doubt that we will be trusting them to cut our hair in the near future. But of course, the skills I am talking about here are vocational skills – not the skills that universities are used to teaching.

As opposed to the emergent Anglo Saxon discourse around “the skills that make humans uniquely human” in Germany the focus on Industry 4.0 is leading to an alternative idea. They are seeing AI and automation as requiring new and higher levels of vocational knowledge and skills in areas like, for example, the preventative maintenance of automated production machinery. This seems to me to be a far more promising area of development. The problem I suspect for education researchers in the UK is that they have to start thinking about education outside the sometimes rarified world of the university.

Equally I do not agree with the reports assertion that most AI applications for education are student-facing and are designed to replace some existing teacher tasks. “If this continues”, they say “while in the short run it might relieve some teacher burdens, it will inevitably lead to teachers becoming side-lined or deprofessionalised. In this possible AI-driven future, teachers will only be in classrooms to facilitate the AI to do the ‘actual’ teaching.”

The reality is that there are an increasing number of AI applications which assist tecahers rather than replace them – and that allow teachers to get on with their real job of teaching and supporting learning, rather than undertaking an onerous workload of admin. There is no evidence of the inevitability of teachers being either sidelined or deprofessionaised. And those experiments from Silicon Valley trying to ‘disrupy’ education by a move to purely online and algorithm driven learning have generally been a big failure.

 

 

Artificial, Intelligence, ethics and education

January 2nd, 2020 by Graham Attwell

I guess we are going to be hearing a lot about AI in education in the next year. As regular readers will know, I am working on a European Commission Erasmus Plus project on Artificial Intelligence and Vocational Education and Training. One subject which is constantly appearing is the issue of ethics. Apart from the UK universities requirements for ethical approval of research projects (more about this in a future post), the issue of ethics rarely appears in education as a focus for debate. Yet it is all over the discussion of AI and how we can or should use AI in education.

There is an interesting and (long) blog post – ‘The Invention of “Ethical AI“‘ recently published by Rodrigo Ochigame on the Intercept web site.

Orchigame worked as a graduate student researcher in the former director of the MIT Media Lab, Joichi Ito’s group on AI ethics at the Media Lab. He left in August last year , immediately after Ito published his initial “apology” regarding his ties to Epstein, in which he acknowledged accepting money from the disgraced financier both for the Media Lab and for Ito’s outside venture funds.

The quotes below provide an outline of his argument although for anyone interested in this field the article merits a full read. the

The emergence of this field is a recent phenomenon, as past AI researchers had been largely uninterested in the study of ethics

The discourse of “ethical AI,” championed substantially by Ito, was aligned strategically with a Silicon Valley effort seeking to avoid legally enforceable restrictions of controversial technologies.

This included working on

the U.S. Department of Defense’s “AI Ethics Principles” for warfare, which embraced “permissibly biased” algorithms and which avoided using the word “fairness” because the Pentagon believes “that fights should not be fair.”

corporations have tried to shift the discussion to focus on voluntary “ethical principles,” “responsible practices,” and technical adjustments or “safeguards” framed in terms of “bias” and “fairness” (e.g., requiring or encouraging police to adopt “unbiased” or “fair” facial recognition).

it is helpful to distinguish between three kinds of regulatory possibilities for a given technology: (1) no legal regulation at all, leaving “ethical principles” and “responsible practices” as merely voluntary; (2) moderate legal regulation encouraging or requiring technical adjustments that do not conflict significantly with profits; or (3) restrictive legal regulation curbing or banning deployment of the technology. Unsurprisingly, the tech industry tends to support the first two and oppose the last. The corporate-sponsored discourse of “ethical AI” enables precisely this position.

the corporate lobby’s effort to shape academic research was extremely successful. There is now an enormous amount of work under the rubric of “AI ethics.” To be fair, some of the research is useful and nuanced, especially in the humanities and social sciences. But the majority of well-funded work on “ethical AI” is aligned with the tech lobby’s agenda: to voluntarily or moderately adjust, rather than legally restrict, the deployment of controversial technologies.

I am not opposed to the emphasis being placed on ethics in AI and education and the debate and practice son Learning Analytics show the need to think clearly about how we use technology. But we have to be careful that we firstly do not just end up paying lip service to ethics and secondly that academic research does not become a cover for teh practices of the Ed tech industry. Moreover, I think we need a clearer understanding of just what we mean when we talk about ethics in the educational context. For me the two biggest ethical issues are the failure of provide education for all and the gross inequalities in educational provision based on things like class and gender.

 

  • Search Pontydysgu.org

    Social Media




    News Bites

    Cyborg patented?

    Forbes reports that Microsoft has obtained a patent for a “conversational chatbot of a specific person” created from images, recordings, participation in social networks, emails, letters, etc., coupled with the possible generation of a 2D or 3D model of the person.


    Racial bias in algorithms

    From the UK Open Data Institute’s Week in Data newsletter

    This week, Twitter apologised for racial bias within its image-cropping algorithm. The feature is designed to automatically crop images to highlight focal points – including faces. But, Twitter users discovered that, in practice, white faces were focused on, and black faces were cropped out. And, Twitter isn’t the only platform struggling with its algorithm – YouTube has also announced plans to bring back higher levels of human moderation for removing content, after its AI-centred approach resulted in over-censorship, with videos being removed at far higher rates than with human moderators.


    Gap between rich and poor university students widest for 12 years

    Via The Canary.

    The gap between poor students and their more affluent peers attending university has widened to its largest point for 12 years, according to data published by the Department for Education (DfE).

    Better-off pupils are significantly more likely to go to university than their more disadvantaged peers. And the gap between the two groups – 18.8 percentage points – is the widest it’s been since 2006/07.

    The latest statistics show that 26.3% of pupils eligible for FSMs went on to university in 2018/19, compared with 45.1% of those who did not receive free meals. Only 12.7% of white British males who were eligible for FSMs went to university by the age of 19. The progression rate has fallen slightly for the first time since 2011/12, according to the DfE analysis.


    Quality Training

    From Raconteur. A recent report by global learning consultancy Kineo examined the learning intentions of 8,000 employees across 13 different industries. It found a huge gap between the quality of training offered and the needs of employees. Of those surveyed, 85 per cent said they , with only 16 per cent of employees finding the learning programmes offered by their employers effective.


    Other Pontydysgu Spaces

    • Pontydysgu on the Web

      pbwiki
      Our Wikispace for teaching and learning
      Sounds of the Bazaar Radio LIVE
      Join our Sounds of the Bazaar Facebook goup. Just click on the logo above.

      We will be at Online Educa Berlin 2015. See the info above. The stream URL to play in your application is Stream URL or go to our new stream webpage here SoB Stream Page.

  • Twitter

  • Recent Posts

  • Archives

  • Meta

  • Categories