GoogleTranslate Service


Lack of proxies a problem for Workplace Learning Analytics

May 3rd, 2016 by Graham Attwell
I’ve been spending a lot of time thinking about Learning Analytics lately and this is the first of four or five short posts on the subject. Its all been kicked off by attending the Society of Learning Analytics pre conference workshops last week – LAK16 – in Edinburgh. Sadly I couldn’t afford the time and money to go to both the workshops and the full conference but many of the presentations and papers from the conference are already viable online.
My interest in Learning Analytics stems from the EmployID project which is aiming to support scalable and cost-effective facilitation of professional identity transformation in public employment services. And in our project application under the EU Research Framework (Horizon 2020) we said we would research and develop Learning Analytics services for staff in Public Employment Services. Easier said than done! An early literature review revealed that despite present high levels of interest (hype?) in Learning Analytics in formal education there has been very little research and development in Workplace Learning Analytics: therefore my excitement at a workshop on this subject at LAK16. But sadly despite the  conference selling out with 400 attendees, we only had four papers submitted for the workshop and just 11 attendees. What this did allow was a lot of in-depth discussion, which has left me plenty of issues to think about. And of course one of the issues we discussed was why there is apparently so little interest in Workplace Learning Analytics. It was pointed out that there have been a number of work oriented presentations in previous LAK conferences but these had remained isolated with no real follow up and with no overall community emerging.
There was also a general feeling that the Learning Analytics community was weak in terms of learning theory and pedagogy, both of which were censored central to Workplace Learning Analytics. But perhaps most importantly Learning Analytics approaches in schools and Higher Education lean heavily on proxies for learning, for instance examination results and grades. With the lack of such proxies for learning in the workplace, Learning Analytics has to focus on real learning – usually in the absence of a Learning Management System. And that is simply very hard to design and develop.Yet having said that, most if not all of us in the workshop were convinced that the real future of Learning Analytics in in the workplace, with a focus on understanding learning including informal learning and improving both learning and the environment in which it occurs.
We agreed on some modest next steps and will be launching a LinkedIn Group in the near future. In the meantime the papers and presentation from the workshop can be found at http://learning-layers.eu/laforwork/.
Please follow and like us:

Comments are closed.

  • Search Pontydysgu.org

    Social Media




    News Bites

    Cyborg patented?

    Forbes reports that Microsoft has obtained a patent for a “conversational chatbot of a specific person” created from images, recordings, participation in social networks, emails, letters, etc., coupled with the possible generation of a 2D or 3D model of the person.

    Please follow and like us:


    Racial bias in algorithms

    From the UK Open Data Institute’s Week in Data newsletter

    This week, Twitter apologised for racial bias within its image-cropping algorithm. The feature is designed to automatically crop images to highlight focal points – including faces. But, Twitter users discovered that, in practice, white faces were focused on, and black faces were cropped out. And, Twitter isn’t the only platform struggling with its algorithm – YouTube has also announced plans to bring back higher levels of human moderation for removing content, after its AI-centred approach resulted in over-censorship, with videos being removed at far higher rates than with human moderators.

    Please follow and like us:


    Gap between rich and poor university students widest for 12 years

    Via The Canary.

    The gap between poor students and their more affluent peers attending university has widened to its largest point for 12 years, according to data published by the Department for Education (DfE).

    Better-off pupils are significantly more likely to go to university than their more disadvantaged peers. And the gap between the two groups – 18.8 percentage points – is the widest it’s been since 2006/07.

    The latest statistics show that 26.3% of pupils eligible for FSMs went on to university in 2018/19, compared with 45.1% of those who did not receive free meals. Only 12.7% of white British males who were eligible for FSMs went to university by the age of 19. The progression rate has fallen slightly for the first time since 2011/12, according to the DfE analysis.

    Please follow and like us:


    Quality Training

    From Raconteur. A recent report by global learning consultancy Kineo examined the learning intentions of 8,000 employees across 13 different industries. It found a huge gap between the quality of training offered and the needs of employees. Of those surveyed, 85 per cent said they , with only 16 per cent of employees finding the learning programmes offered by their employers effective.

    Please follow and like us:


    Other Pontydysgu Spaces

    • Pontydysgu on the Web

      pbwiki
      Our Wikispace for teaching and learning
      Sounds of the Bazaar Radio LIVE
      Join our Sounds of the Bazaar Facebook goup. Just click on the logo above.

      We will be at Online Educa Berlin 2015. See the info above. The stream URL to play in your application is Stream URL or go to our new stream webpage here SoB Stream Page.

      Please follow and like us:
  • Twitter

  • Recent Posts

  • Archives

  • Meta

  • Categories